
Comments on a paper concerning the analytic continued fraction technique for bound states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 L1

(http://iopscience.iop.org/0305-4470/15/1/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) L1-L5. Printed in Great Britain 

LE'ITER TO THE EDITOR 

Comments on a paper concerning the analytic continued 
fraction technique for bound states 

George P Flessas 
Department of Natural Philosophy, University of Glasgow, Glasgow G12 8QQ, Scotland 

Received 19 October 1981 

Abstract. We show that the treatment of bound and confined states for a class of 
confinement potentials by application of the analytic continued fraction method, as 
presented in a recent paper published here, is erroneous and may lead to wrong results for 
the eigenvalues of the relevant Schrodinger equation. 

Recently Datta and Mukherjee (1980) considered a confining potential of the form 

V(r )  = -a /r  + br + cr2 c>o.  (1) 

R"(r) + [(2p/h2)(E + a / r  - br - cr2) - I(1 + l)/r2]R ( r )  = 0. 

The corresponding radial Schrodinger equation reads 

(2) 

E = energy, 1 = relative orbital angular momentum. Making the standard trans- 
formation 

R ( r )  ='r'+l exp(- $r2a - pr)g(r) (3) 

we get for g(r) the differential equation 

g" + 2[(1+ l ) / r  -ar -p]g '+{~ - (21 + 3)a + [ a  - 2/3(1+ l)]/r}g = 0 (4) 
with 

a = [(2p/h2)C]1/2 

E =/3*+e e = ( 2 p / h 2 ) ~ .  

p = (2p/h2)"'(b/c1'') 

Equation (4) is solved by 
m 
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Repeated application of equation (9) for n = 0, 1 , 2 , 3 ,  . . . gives 

- [ E  -(21+ 3 ) a ]  
- 2 @ ( l + 2 ) + ~  -2(2l  + 3 ) [ ~  - ( 2 l +  5)a] 

-= 
PO 

Finally, using equation (8) we obtain for n = - 1  

P d P O  = - [2P(f  + 1) + a1/(21 + 2)  
and consequently equation (10)  yields 

(21 + 2 ) [ ~  - (21 + 3 ) 4  
-2p(Z + 2 )  + U - 

- 2 P ( Z + l ) + a  = 
2(2l+ 3 ) [ ~  - (21 + 5 1 4  

- 2 P ( l + 3 ) + ~  - .  

Equations ( 1  1)-(12) can be found also in Datta and Mukherjee’s paper but we have 
repeated them here in order to point out the error in the argument they use regarding 
equation (12) .  These authors claim that equation (12)  is the ‘consistency condition’ for 
the existence of the solution for the system of equations (8), the solutions of (12) in E or, 
equivalently, E being the energy eigenvalues for the problem. This is, however, a false 
statement and totally confusing with respect to the correct eigenvalues, as we shall 
verify below. 

(i) The differential equation (4) can be written as 

(13)  
(1 + 1 -ar2--pr) 

r 
{ [ E  - ( 2 ~  + 3 ) a ] r + a  - 2 p ( l +  1))r  

r 

Hence, according to the general theory of linear differential equations (Morse and 
Feshbach 1953) equation (13)  has at r = 0 a regular singular point and at r = 00 an 
irregular singular point. The indicia1 equation of (13) has the roots 0 and - (2 l+  1 ) .  
Obviously, owing to equation (3), we must discard 4 2 1  + 1 ) .  Thus we get equations 
(7)-(8). Now, from equation (8) we can calculate recursively any pn (cf any textbook on 
differential equations) and there is no need whatsoever to take account of any 
‘consistency condition’. What Datta and Mukherjee actually do is using a method 
described by Morse and Feshbach (1953) in connection with the Mathieu equation. This 
method is applicable when one has the solution of a differential equation in the form ( 7 )  
and wishes to prove that the series converges for every r. Then (cf Morse and Feshbach, 
pp 556-9) in the case of a three-term recurrence relation for the coefficients of the series 
in question we obtain the equivalent formulae to equations (9)-(12)  and the value of the 
relevant parameter (denoted with s in the case of the Mathieu equation), for which the 
series is convergent for all r, can be calculated from an equation of the type (12).  But 
such a procedure is absolutely superfluous here because the series (7) ,  as the differential 
equation ( 1 3 ) ,  i.e. (4) ,  has no other singularities between 0 and 00, converges (Morse 
and Feshbach 1953) for all r E [0, 00). Thus the phrase ‘consistency condition’ used by 
Datta and Mukherjee in respect of equation (8) is meaningless and the p exist for any E. 
Moreover, since the series in equation (7) converges for all r 2 0,  we obtain pn + 0 for 
n + a. It is recalled that the Mathieu equation has an irregular singular point at r = 0 

g” + 2 g ’ +  2 g=o. 
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and so the convergence of the solving series cannot be ascertained otherwise than as 
described by Morse and Feshbach. 

(ii) The statement made in the paper of Datta and Mukherjee that ‘equation (3) 
gives the appropriate asymptotic behaviour of the solution of equation (2)’ is wrong. 
One must investigate the behaviour of g ( r )  for r + 00 and examine if it compensates 
exp(-frZa -@r)  in equation (3)’ because if this happens, then lirn,+- R(r)  + 0 which 
means that such an R(r)  is physically unacceptable. This is precisely the well known 
method adopted in the case of the harmonic oscillator (a = b = 0 in equations (1)-(2)) 
which leads to the familiar Laguerre polynomials. In the case of the potential (1) the 
correct eigenvalues will be obtained solely from the requirement that g ( r )  as r + Q) does 
not compensate exp(-fr2a - pr ) .  

(iii) Equation (12) gives those E values for which the representation of pl/po by 
means of the continued fraction (10) is valid. In the case of the Mathieu equation the 
representation of the corresponding p l / p o  as a continued fraction is a sufficient 
condition, as shown in Morse and Feshbach (1953, pp 557-8), for the convergence of 
the series solving the Mathieu differential equation, whereas in our case such a 
condition is completely irrelevant. In no case need the E values calculated from 
equation (12) be those that ensure that R(r )  remains normalisable. Equation (12) gives 
the correct eigenvalues only in the case of the harmonic oscillator (a = b = 0), simply 
because we get a two-term recursion relation then (a = b = 0 in equation (8)) for the p 
and equation (12) is fulfilled for those E values, for which the series satisfying equation 
(4) (for a = b = 0) terminates. Such a termination, however, of the series in equation (4) 
in the general case a # 0, b # 0 and for E values derived from equation (12) is not 
possible. Indeed, by using equation (8) we obtain 

D n  (- 1) “Po 
’“=n!(2+21)(3+21) . . . (  n+1+21) 

a - 2@(1 + 1) 1(2+21) 
a - 2/3(1+ 2 )  1 E-(2.2;1+21)* 

D. = E - (2.3-1+21)a 
0. 

Di = U -2/3(1+ 1) n s l  (14) 

0 
2(3 +21) 

a -2@(1+ 3 )  
E - (2n - 1 + 2 l ) a  a - 2 @ ( l + n )  

and consequently the series in equation (7) terminates, say pn = 0 for n 3 N + 1, if and 
only if, as follows from equations (8) and (14), 

~ = ( 2 n + 2 1 + 3 ) a  (15) 

Dn+l = 0. (16) 

Equations (15)-(16), which are equivalent to those that one obtains for the one- 
dimensional doubly anharmonic oscillator (Singh et a1 1980) and for the one-dimen- 
sional Schrodinger equation with the potential xz  + Axz/(l + gxz) (Flessas 1981, White- 
head et a1 1982), show that terminating solutions of equation (4) are possible only if a 
relation between 1, a, b and c holds. This condition is obtained by inserting equation 
(15) into equation (16) and implies that at least one of the parameters a, b, c becomes 
ldependent, a result which contrasts with that of the one-dimensional cases mentioned 
above. The eigenvalues are given by equation (15). 

(iv) From equations (8)-(9) we deduce that for large n,p,+l/p, behaves like 
*(2a/n)”*. This shows that, as of course is expected from the convergence of 
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g ( r ) ,  ( p n + l / p n ) +  0 as n -* 00 and that g ( r )  for large r behaves like either of the series 

which converge for r E [0, 00). We consider now the first alternative in equation (17). 
This possibility is realised if all p are positive. Let us for simplicity take the harmonium 
potential, where b = 0 in equation (1). Then equation (8) shows that for a < 0 and 
0 C E < (21 + 3)a we have pn  > 0 if PO > 0. Further, we compare G(r)  with 

1 2  O3 ibff)nr2n exp(y a )  = C - 
,,=o n !  

by comparing the coefficients of even r powers in G(r)  with those of equation (18). Thus 
it is easily verified that for sufficiently large but finite n, say N, the inequality 

is satisfied. Since 

and 

equations (19)-(21) verify, as a little thought reveals, that G(r) and, hence, also g ( r )  
compensates exp(-$r2a) for r -* CO. Therefore if E fulfils 0 < E < (21 +3)a and a < 0 
then (cf equations (5)-(6)) e with 0 < e < (21 + 3)a cannot be an eigenvalue of equation 
(2). This important result is totally missed by Datta and Mukherjee (1980) in their 
treatment of the harmonium potential. One can give other examples with b 3 0, which 
verify the inadequacy of equation (12) for the calculation of the eigenvalues of equation 
(2). This was to be expected in view of (i)-(iii). 

(v) The method used by Datta and Mukherjee (1980) has been first applied to the 
study of the ax2 + bx4 + cx6 potential by Singh et a1 (1978). In the paper of Singh et a1 
(1978) the relation equivalent to equation (12) is utilised for the calculation of the 
eigenvalues which are obtained as poles of a 'Green function' constructed from that 
relation. Datta and Mukherjee's paper proceeds along exactly the same lines. Nowhere 
in both papers is the basic requirement, that the wavefunction remains normalisable, 
incorporated into the method. Of course some eigenvalues may still be solutions of 
equation (12) but in no case need all the eigenvalues be the solutions of that equation. 

To sum up we have verified that the method of Datta and Mukherjee (1980) for the 
calculation of eigenvalues is based on a mathematically meaningless relation and may 
thus lead to wrong results for the eigenvalues in question. That procedure should not be 
used without a proper incorporation into it of the physically important requirement that 
R ( P )  -+ 0 as r + a, Thus one may obtain further eigenvalues in addition to those for 
which the series in equation (7) terminates. 
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